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Final Technical Report

AFOSR Grant 84-0285

V. I. Oliker

and

P. Waltman

The physical phenomena described by nonlinear partial differential equations have become at present

the central theme of investigations by many researchers. A good understanding of most physical processes

requires accounting for nonlinear effects and, consequendy, methods for studying nonlinear equations have

to be developed.

Among nonlinear equations the Dirichlet problem for the Monge-Ampere equation is the model case

for fully nonlinear equations. The problem is formulated as follows.

In Euclidean plane R2 with Cartesian coordinates x, y consider a bounded domain Q2, a nonnegative

"" function f: 2 - [Ow), and a continuous function 0: a --* R. It is required to investigate solubility of the

problem

MW 2z 2-2-(2-z) 2 : / in O, (1

aX2  aY2  axaz

z I r= 0, r = an. (2)

The equation (I) is perhaps the most simple representative of the class of nonlinear equations of

Mange-Ampere typ. Such equations have been studied by many authors, mainly in connection with prob-

lems of existence and uniqueness of surfaces with prescribed metric or curvature functions. However, they

also have other important applications. In particular, the leading term in the "balance equation" in dynamic

q meteorology has the form (1). In a more complicated form, an equation of this type appears in the von

Karman system of equations for elasticity and also in an inverse problem of geometric optics; see below

part B. It also turned out that recent progress in the study of fully nonlinear equations became possible

after important properties of the equation (1) were discovered. For quasilinear elliptic and parabolic equa-

tions the use of equations of the form (1) is crucial in obtaining C' and Holder estimates.
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In spite of the increasing number of papers in this area the theory of the problem (1), (2) and its gen-

eralizations is far from being complete. Researchers in the USA, USSR, Germany, England and other

countries at present are actively pursuing this direction.

The proposers were fortunate to start their research at a relatively early stage of all these develop-

merits. The project funded by the AFOSR Grant 84-0285 covers two major areas:

A. Investigation of numerical methods for solving problem (1), (2) and its generalizations.

B. Investigation of solubility of a Monge-Ampere equation arising in shaped antenna design.

Part A. Numerical Methods. The type of the operator M depends on the function on which it is

evaluated. For that reason, one usually seeks a solution of (1), (2) in the class of functions on which M has

a fixed type, for example, elliptic or hyperbolic. In the case under consideration, the requirement f > 0 in

Ql forces any function satisfying (1) to be an "elliptic" solution, that is, in the class where M is elliptic.

In view of the important practical applications several heuristic approaches were suggested for

'p numerical solution of some modified forms of (1), (2). Though no rigorous analysis of these methods

exists, one may note that they all are local methods based on a finite difference approximation and lineari-

zation. Because of the strong nonlinearity of M this approach might be successful only in a neighborhood
..

of the true solution and therefore, if a priori a good initial approximation is not available, these methods

will not produce, generally, a sequence converging to the true solution.

We investigated this problem in detail and obtained the following results:

S A special discretization scheme for (1). (2) was suggested different from standard finite element or

finite difference schemes. It can be shown that later ones in known forms will not work here;
For

an iterative method has been developed for solving the discretized version of (1), (2);

. the question of finding an initial approximation in our scheme is completely and effectively resolved; L ton

it is just a routine step of the iterawn process;
BYI Distribut ton/ -

" the iterations are selfcorrecung - /Distribtio

* global convergence is establhned. I - 'tl J. ntdl /orIDSt speclftl,
- v~l 1 !dO
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• our algorithm is suitable for a parallel comptuer;

' a computer code has been written and tested on a serial machine.

The experience gained in testing our procedure on different types of examples, including ones with

large gradients, shows that its most effective use will be in combination with some fast Newton-type

scheme. More precisely, a particular criteria exists for checking when the current approximation can be

used as the beginning step for a converging Newton-type iterative proecdure. In this combined scheme we

proved convergence (quadratic) of the Newton iterates, but the above mentioned criteria involves some-I.
heuristic arguments and more work needs to be done here.

The computer code for the method is quite sophisticated; it involves, as a step, construction of a con-

vex hull of sets of points in R 3. There are here different approaches and the effectiveness of the algorithm

depends on it. We have been currently testing various scherres and the code presently is a substantial

improvement over its original version of 1984-85.

The results have been submitted for publication (see the subsection on publications and presenta-

tions).

Part B. Applications to Shaped Antenna Design. In a practical problem of shaped antenna design

it is required to determine a reflecting surface such that for a given point-source of light the reflected rays

cover a prescribed region of the far sphere and the density of the distribution of reflected rays is a

prescribed in advance function of the direction. It is assumed that the power density of the source as well

as the ~Apperture of the incident ray cone are known, and the reflection process obeys the laws of geometric

optics (see Figure I on next page). In this form the problem was posed by Westcott and Norris and later it

has been considered by Brickell, Marder. and Westcott. The research of these investigators has been sup-

ported by Plessey Radar, Ltd. for many years.

The problem admits a precise mathernaucal formulation and in this form it reduces to solving the

equation

0.N



3,

Reflected 
Tar-ge t

-Ray

y Parallel Reflected Ray

Reflec-.irg

Antrin

U.W

OBJECT: To Illuminate Target with Prescribed Intensity

(Through Given Aperture)

Equiva'lent to Determining the Surface and Position of Reflector

Figure 1

NZ
-1 Ie



.4.

4P2 det[VIP + (P - 2P1I7.P (3)

(IVP 1z + P2 )2 det(e,,) =

nonlinear boundary condition on a0c, (4)

with respect to the unknown function P(>O) naturally associated with the problem; here (e,,) is the matrix

of the first fundamental form e of the unit sphere S2 V the gradient in the metric e, V,/ - second covariant

derivatives in e, and f the prescribed power density. The condition (4) is somewhat complicated to be

present- .: ,,e without considerable expansion. The question of existence of solutions to this problem is

open. Conditions for uniqueness were given by Marder. Westcotz and Norris have given some results of

numerical studies and applications. Still there are no rigorous convergence results, and even the linearized

version of the problem has not been investigated. In 1957 J. Keller obtained results pertaining to the radi-

ally symmetric case without satisfying a particular boundary conditon.
-a

With the support of AFOSR we started our investigation of the problem with the radially symmetric

(r.s.) case, that is, when the incidence ray cone Q and the far field domain wi are circular, the prescribed

density of reflected rays is a function of the asimutal angle only, and the reflecting surface is sought as a

surface of revolution, later we also ivestigated the nonradially symmetric case. The following results

have been obtained:

" The problem splits naturally into two parts. In the first part one finds a class of surfaces for which

the reflected directions cover the prescribed domain a). Those surfaces can be conveniently

parametized by points of (. In the second part one seeks in the above class a particular surface for

which the density of the reflected rays is a prescribed function in o. and which projer. onto the

given domain a;

* iuis shown that for any function p E C2 ((J). p > 0 in w, the surface F defined by the map

-r = Vp - (p -p)y, y 03,
(5)

p=(p-- (P :,z r , Vp V=<p. Vp>.

satisfies the requirement of being a reie-tror
4j

I
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simple and verifiable necessary and sufficient conditions for solubility of (3), (4). It was shown that

radially symmetric solutions can be constructed explicibly whenever all of the parameters are

appropriate.

In a separate paper we proved that in the nonradially symmetric case with circular incident ray cone

and far field and distribution density close (in certain norm) to a radially symmetric distribution this prob-

lem admits two classes of solutions provided the data satisfies a necessary condition expressing the energy

conservation law.

The methods of this paper could be used to find solutions to the above problem in cases when the

incident ray cone and the far field are not circular but close to such (in certain particular sense). Also, the

main theorem here provides an important step in a continuation scheme for proving existence of solutions

to the above problem with distribution densities not subject to the requirement of being close to the radially

symmetric ones. We intend to return to these questions in subsequent publications. One other conse-

quence of our main result here is that it justifes the use of Newton-type local methods for numerical solu-

tion of the problem.

During the past year we have also experimented with numerical methods for solving (3), (4) for*

sufficiently close to a r.s. symmetric density. In r.s. case the equation is singular at the endpoint

corresponding to axis of revolution, and as a result straight forward linearizations about r.s. solutions do not

seem to work very well.

Publicstions and Presentation

The results obtained in Part A were presented in

* a paper *On the numerical solution of the equation

ax ' y., 2xa

and its discretizations. 1". It has been submitted for publication and is currently under revision;

* a lecture at a special session of the Southeastern-Atlantic Regional Conference on Differential Equa-

tion. Atlanta. October, 1985

.% ,
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a plenary lecture was delivered on the subject by one of the principal investigators at the South

Eastern Regional SIAM Conference, March. 1986.

The results in Pan B were presented in

a paper "Radially symmetric solutions of a Monge-Ampere equation arising in a reflector mapping

problem", pp. 1-19; accepted for publication in Proceedings of UAB Conference on Differential

Equations and Mathematical Physics, Springer;

* a paper "Near radially symmetric solution of an inverse problem in geometric optics", pp. 1-23, to

appear in the journal "Inverse problems", published by The Institute of Physics, England

* a report "On the Monge-Ampere equation arising in the reflector mapping problem", Institute for

Mathematics and its Applications, University of Minnesota, preprint series #198, pp. 1-43 (this is an

expanded version of the first paper mentioned in this part);

, an hour lecture given at the Technical University in Berlin, West Germany, December, 1985.

" a 30-minute presentation at the conference on Differential Equations and Mathematical Physics,

University of Alabama, Birmingham, March, 1986.
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